Volume 2, Issue 2, December 2018, Page: 53-57
On the Possibility of Spontaneous Magnetic Field Observation in Turbulent Laser Plasma
Alexandra Lebo, Faculty of Business Informatics, National Research University Higher School of Economics, Moscow, Russia
Ivan Lebo, Institute of Cybernetics, Russian Technologic University MIREA, Moscow, Russia
Received: Aug. 29, 2018;       Accepted: Nov. 1, 2018;       Published: Dec. 4, 2018
DOI: 10.11648/j.ep.20180202.14      View  943      Downloads  103
Abstract
It has been discussed the opportunity of the spontaneous magnetic field (SMF) observation in turbulent hot plasma which formed as the result of power laser beam interaction with porous low density matter. The sources of SMF appearance are the crossed gradients of electron pressure and plasma density, which arise in the turbulent zone and increase with its development. It has been proposed two diagnostic methods for investigation of SMF generation in turbulent laser plasma. The first method bases on the idea of the constrained orientation of magnetic moments with help of the external strong regular magnetic field (~ 0.1 MG). The second method bases on the idea of bunch electron scattering observation in the magnetic fields. The Mega Gauss SMF could effect on energy transport in laser plasma. The generation of SMF up to 100 MGs in low density substance could suppress the electron heat conductivity into the wall of cone target and improve the conditions of “dynamical confinement” of compressed DT fuel.
Keywords
Turbulent Laser Plasma, Spontaneous Magnetic Fields, Two Methods of SMF Observation
To cite this article
Alexandra Lebo, Ivan Lebo, On the Possibility of Spontaneous Magnetic Field Observation in Turbulent Laser Plasma, Engineering Physics. Vol. 2, No. 2, 2018, pp. 53-57. doi: 10.11648/j.ep.20180202.14
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Korobkin V. V., Serov R. V. (1966), Pis’ma v Zhurnal Eksp. Teor. Fiziki, 4,103-106 (in Russian).
[2]
Askar’yan G. A., Rabinovich M. S., Smirnova A. D., V. B. Studenov V. B.. (1967). Pis’ma v Zhurnal Eksp. Teor. Fiziki. 4, 116-120.
[3]
Stamper J. A. et al. (1971). Phys. Fluids, v.26, 1012-1019.
[4]
Bol’shov L. A., Dreizin Yu. A., Dyikhne A. M. (1974). Pis’ma v Zhurnal Eksp. Teor. Fiziki, 77, N19, 289-191, (in Russian).
[5]
Al’terkop B. A., Mishin E. B., Rukhadze A. A. (1974). Pis’ma v Zh. Eksp. Teor. Fiziki, 77, N19, 292-294, (in Russian).
[6]
Craxton R. S., Hains G. (1975), Phys. Rev. Letters, 35, 1336-1346.
[7]
Colombant D. G., Winsor N. K., (1977), Phys. Rev. Letters, 38, 1278-1285
[8]
Afanas’ev Yu. V., Gamaly E. G., Lebo I. G., Rozanov V. B. (1978), Zhurnal Exp, Teor. Fiziki, 74(2), 516-524 (in Russian).
[9]
E. G. Gamaly, I. G. Lebo, V. B. Rozanov. (1985). Spontanie magnitnie polya v sfericheskoy lazernoy plazme. Trudi Fizicheskogo Instituta im. P. N. Lebedeva. Academiya nauk SSSR. V.149, 66-96, Moskva, Nauka (in Russian).
[10]
Diankov O. V., Glazirin I. V., Koshelev S. V. et al. (2000). Laser and Particle Beams, 18(2), 255-260.
[11]
Stamper J. A., McLean E. A., Ripin B. H. (1978). Phys. Rev. Letters, (1978), v.40, 1177-1181.
[12]
F. V. Bunkin, Yu. S. Kas’anov, V. V. Korobkin, S. L. Motilev. (1983). Kvantovaya Electronika, 10, 2149-2151.
[13]
Dune M., Borghesi M., Ivase A. et al. (1995). Phys. Rev. Letters. 75 (21), 3858-3861.
[14]
Koch J. A., Esterbrook K. G., Bauer J. D. et al. (1995). Phys. Plasmas, 2, 3820-3831.
[15]
Bugrov A. E., Burdonskiy I. N., I. K. Fasakhov et. al. (2003). Proc. Of SPIE, v.5228. Ed. By O. N. Krokhin, S. Yu. Gus’kov, Yu. A. Merkuliev, Bellingham. WA.
[16]
Borisenko N. G., Akunets A. A., Khalenkov A. M. et al. (2007). Journal of Russian Laser Research. 28, N.6, 548-566, 2007.
[17]
Borisenko N. G., Merkuliev Yu. A. (2010). Jour. of Russian Laser Research. 31, N3, 256-269.
[18]
Lebo A. I., Lebo I. G. (2009). Mathematical Models and Simulations, 1(6), 724-738.
[19]
Lebo A. I., Lebo I. G. (2010a). A model of the energy transport in turbulent plasma of porous targets. IOP Publishing. Phys. Scripta, T142, 014024 (4pp).
[20]
Jungwirth K., Cenarova A., Juha L, Kralicova J. et al. (2001). Phys. Plasmas, 8, 2495-3006.
[21]
Batchelor G. (1950). On the Spontaneous Magnetic Field in Conducting Liquid in Turbulent Motion. Proceedings of the Royal Society of London, Ser. Math. And Phys. Sciences, 21, London, Cambridge Univ., 23 May.
[22]
Lebo A. I., Lebo I. G. (2010). Mathematical Models and Simulations, 2(3), 359-361.
[23]
Gotchev O. V., Chang P. Y., Knauer J. P. et al. (2009), Phys. Rev. Letters, 103, 215004(4).
[24]
Kotel’nikov S. S., Lebo I. G., Rozanov V. B. (1986). Soviet Physics – Lebedev Institute Reports. Allerton Press. Inc. N12, 95-100.
[25]
Korobkin Yu. V., Lebo A. I., Lebo I. G. (2010). Quantum Electronics. 40(9), 811-816.
[26]
Konash P. V., Lebo I. G., (2006). Quantum Electronics, 36(8), 767-772.
[27]
Konash P. V., Lebo A. I., Lebo I. G. (2013). Mathematical Models and Computer Simulations. 6(1), 9-18
[28]
Lebo I. G., Isaev E. A., Lebo A. I. (2017). Quantum Electronics, 47(2), 106-110. Kvantovaya Elektronika and Turpion Ltd.
Browse journals by subject